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Highlights of 2015

Welcome to JPhysG's 2015 highlights! Before you get to the articles, here

are a few of my personal choices.

First, the way the community reacted and engaged with our focus issue,

Enhancing the interaction between nuclear experiment and theory through

information and statistics was outstanding. Linking theory with experiment

is vital for any field and I look forward to seeing more research on the topic

in both nuclear and particle physics.

Then, in mid-2015 Sir Tom Kibble kicked off our selection of 40th

anniversary articles, a unique collection of works from renowned authors

stretching across the journal's scope, and an initiative that's still growing.

Finally, 2015 saw the launch of JPhys+: a blog dedicated to physicists and

their research. The blog already has thousands of readers, so check out

what it's all about and don't forget to follow us on Twitter, @JPhysPlus.

I hope you enjoy this year's collection.

Colin Adcock

Executive Editor, Journal of Physics G: Nuclear and Particle Physics
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Overview
With the maturation of calculational methods such as lattice QCD for hadronic physics, ab initio and density
functional theory approaches for nuclear structure and reactions (with applications to astrophysics and fundamental
symmetries), and viscous hydrodynamic modeling of relativistic heavy-ion collisions, nuclear theory is entering an era
of precision calculations. This is leading to increased demand for sophisticated uncertainty quantification, to
effectively interface with, inform, and analyze experiments. The methods used to quantify errors are often based on
frequentist statistical analysis, but Bayesian methods are becoming increasingly popular. 

Bayesian statistics is a well-developed field, although it has not been part of the traditional education of nuclear
theorists. In schematic form, Bayesian statistics treats the parameters or the model/theory as genuine random
variables. It then uses Bayes theorem of probabilities to provide a recipe to compute their probability distribution (the
“posterior”) in terms of prior information (e.g., about the data) and a likelihood function. For applications to fitting
(“parameter estimation”), the posterior lets us infer, given the data we have measured, the most probable values of
the parameters and predict values of observables with confidence intervals. Other applications involve deciding
between alternative explanations or parameterizations (“model selection”). In practice, there are pitfalls in the
implementation of this formalism and it is often a computationally hard problem. 

Interest in Bayesian statistics has increased significantly in the past 10 years. The wide availability of large-scale
computing resources has made the computation of the integrals needed for Bayesian inference easier. Modern
experimental and observational facilities generate large amounts of data, often best analyzed and characterized
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Chandrasekhar shows that massive stars will 
collapse (1931)

Chadwick discovers the neutron (1932) 
(… predicted earlier by Majorana but never published)

Baade-Zwicky introduce the concept of a 
neutron star (1933) 
(… Landau mentions dense stars that look like giant nuclei!)

Oppenheimer-Volkoff use GR to compute the 
structure of neutron stars (1939) 
(… predict                       as maximum neutron star mass)

Jocelyn Bell discovers neutron stars (1967)

M? ' 0.7M�

Neutron Stars: Very Few Historical Facts 



Neutron Stars: Unique Cosmic Laboratories
Neutron stars are the remnants of massive stellar explosions (CCSN)

Bound by gravity — NOT by the strong force
Catalyst for the formation of exotic state of matter 
Satisfy the Tolman-Oppenheimer-Volkoff equation (vesc /c ~ 1/2)

Only Physics that the TOV equation is sensitive to: Equation of State 
EOS must span about 11 orders of magnitude in baryon density

Increase from 0.7/ 2 Msun transfers ownership to Nuclear Physics!
Predictions on stellar radii differ by several kilometers!

Neutron Stars as Nuclear Physics Gold Mines
Neutron Stars are the remnants of massive stellar explosions

Are bound by gravity NOT by the strong force
Satisfy the Tolman-Oppenheimer-Volkoff equation (v

esc

/c⇠1/2)
Only Physics sensitive to: Equation of state of neutron-rich matter

EOS must span about 11 orders of magnitude in baryon density
Increase from 0.7!2M� must be explained by Nuclear Physics!

common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryondensity of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.746 0.15)3 1015 g cm23, or ,10ns.
Evolutionary models resulting in companion masses.0.4M[ gen-

erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period.8ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exoticmatter; green, strange quarkmatter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.976 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases themaximum possiblemass for each EOS. For a 3.15-ms spin period,
this is a=2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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The Composition of the Outer Crust 
Enormous sensitivity to nuclear masses

System unstable to cluster formation
BCC lattice of neutron-rich nuclei imbedded in e-gas

Composition emerges from relatively simple dynamics
Competition between electronic and symmetry energy

Precision mass measurements of exotic nuclei is essential
Both - for neutron-star crusts and r-process nucleosynthesis
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Welcome to the digital edition of the April 2013 issue of CERN Courier.

Supernova explosions provide a natural laboratory for some interesting 
nuclear and particle physics, not least when they leave behind neutron 
stars, the densest known objects in the cosmos. Conversely, experiments 
in physics laboratories can cast light on the nature of neutron stars, just as 
the ISOLTRAP collaboration is doing at CERN’s ISOLDE facility, as this 
month’s cover feature describes. Elsewhere at CERN, the long shutdown of 
the accelerators has begun and a big effort on maintenance and consolidation 
has started, not only on the LHC but also at the experiments. At Point 5, work 
is underway to prepare the CMS detector for the expected improvements to 
the collider. Meanwhile, the Worldwide LHC Computing Grid continues to 
provide high-performance computing for the experiments 24 hours a day, 
while it too undergoes a continual process of improvement. 
 
To sign up to the new issue alert, please visit: 
http://cerncourier.com/cws/sign-up. 

To subscribe to the magazine, the e-mail new-issue alert, please visit:  
http://cerncourier.com/cws/how-to-subscribe.

CERN Courier – digital edition
W E L C O M E

WWW.
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DFT meets BNN
PHYSICAL REVIEW C 93, 014311 (2016)

Nuclear mass predictions for the crustal composition of neutron stars:
A Bayesian neural network approach

R. Utama,* J. Piekarewicz,† and H. B. Prosper‡

Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
(Received 25 August 2015; revised manuscript received 14 December 2015; published 20 January 2016)

Background: Besides their intrinsic nuclear-structure value, nuclear mass models are essential for astrophysical
applications, such as r-process nucleosynthesis and neutron-star structure.
Purpose: To overcome the intrinsic limitations of existing “state-of-the-art” mass models through a refinement
based on a Bayesian neural network (BNN) formalism.
Methods: A novel BNN approach is implemented with the goal of optimizing mass residuals between theory
and experiment.
Results: A significant improvement (of about 40%) in the mass predictions of existing models is obtained after
BNN refinement. Moreover, these improved results are now accompanied by proper statistical errors. Finally,
by constructing a “world average” of these predictions, a mass model is obtained that is used to predict the
composition of the outer crust of a neutron star.
Conclusions: The power of the Bayesian neural network method has been successfully demonstrated by a
systematic improvement in the accuracy of the predictions of nuclear masses. Extension to other nuclear
observables is a natural next step that is currently under investigation.

DOI: 10.1103/PhysRevC.93.014311

I. INTRODUCTION

Shortly after the discovery of the neutron by Chadwick, the
remarkable semiempirical nuclear mass formula of Bethe and
Weizsäcker was conceived. Originally proposed by Gamow
and later extended by Weizsäcker, Bethe, Bacher, and oth-
ers [1,2], the “liquid-drop” model (LDM) regards the nucleus
as an incompressible drop consisting of two quantum fluids,
one electrically charged consisting of Z protons and one
neutral containing N neutrons. Given that the nuclear binding
energy B(Z,N ) accounts for only a small fraction (!1%) of the
total mass of the nucleus, it is customary to remove the large,
but well known, contribution from the mass of its constituents.
That is,

B(Z,N ) ≡ Zmp + Nmn − M(Z,N ), (1)

where A = Z + N is the mass (or baryon) number of the
nucleus. In this manner B(Z,N ) encapsulates all the com-
plicated nuclear dynamics. In the context of the liquid-drop
formula, the binding energy is written in terms of a handful of
empirical parameters that represent volume, surface, Coulomb,
asymmetry, and pairing contributions:

B(Z,A) = avA − asA
2/3 − ac

Z2

A1/3
−

(
aa + aas

A1/3

)

× (A − 2Z)2

A
− ap

η(Z,N )
A1/2

+ · · · , (2)

where the pairing coefficient takes values of η = +1,0,−1
depending on whether an even-even, even-odd, or odd-odd

*ru11@my.fsu.edu
†jpiekarewicz@fsu.edu
‡harry@hep.fsu.edu

nucleus is involved. Note that besides the conventional
volume asymmetry term, a surface asymmetry term has also
been included [3]. The handful of empirical coefficients are
determined through a least-squares fit to the thousands of
nuclei whose masses have been determined accurately [4].
It is indeed a remarkable fact that in spite of its enormous
simplicity the 80 year old LDM has stood the test of time.

To a large extent, the reason that the LDM continues to
be enormously valuable even today is because the dominant
contribution to the nuclear binding energy varies smoothly
with both Z and N . Indeed, according to Strutinsky’s energy
theorem [5], the nuclear binding energy may be separated
into two main components: one large and smooth and another
one small and fluctuating. Whereas successful in reproducing
the smooth general trends, the LDM fails to account for
the rapid fluctuations with Z and N around shell gaps. The
explanation for the extra stability observed around certain
“magic numbers” had to await the insights of Haxel, Jensen,
Suess, and Goeppert-Mayer [6,7], who elucidated the vital
role of the spin-orbit interaction in nuclear physics. Since the
seminal work by Goeppert-Mayer and Jensen, who shared
with Wigner the 1963 Nobel Prize, theoretical calculations
have evolved primarily along two separate lines of investiga-
tion. One of them—the so-called microscopic-macroscopic
(“mic-mac”) model—incorporates microscopic corrections
to account for the physics that is missing from the most
sophisticated macroscopic models. Mic-mac approaches have
enjoyed their greatest success in the work of Möller and
co-workers [8–10] and Duflo and Zuker [11]. The second
theoretical approach, falling under the general classification
of microscopic mean-field models, relies on an energy density
functional that is motivated by well known features of the
nuclear dynamics. Such density functionals are expressed in
terms of a handful of empirical constants that are directly fitted
to experimental data [12–15].

2469-9985/2016/93(1)/014311(11) 014311-1 ©2016 American Physical Society

M(N,Z) = MDFT (N,Z) + �MBNN (N,Z)

Systematic scattering greatly reduced   
Predictions supplemented by theoretical errors         

Use DFT to predict nuclear masses   
Train BNN by focusing on residuals          

o

The paradigm

Blume-2006



The EOS of asymmetric matter: a=(N-Z)/A; x=(r-r0)/3r0; T=0 

r0  x0.15 fm-3 — saturation density 4 nuclear density

Symmetric nuclear matter saturates:  
e0  x-16 MeV — binding energy per nucleon 4 nuclear masses
K0x230 MeV — nuclear incompressibility 4 nuclear “breathing” mode

Density dependence of symmetry poorly constrained:  
J  x30 MeV — symmetry energy 4 masses of neutron-rich nuclei
Lx? — symmetry slope 4 neutron skin (Rn-Rp) of heavy nuclei ?
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TABLE III. Constrained energies EGMR =
√

m1/m−1 (in MeV)
for the GMR in 90Zr, 116Sn, 144Sm, and 208Pb obtained from exper-
iments at TAMU [62] and RCNP [63–67]. Theoretical results were
obtained by following the constrained RMF formalism developed in
Ref. [68].

Nucleus TAMU RCNP NL3 FSU FSU2

90Zr 17.81 ± 0.35 — 18.76 17.86 17.93 ± 0.09
116Sn 15.90 ± 0.07 15.70 ± 0.10 17.19 16.39 16.47 ± 0.08
144Sm 15.25 ± 0.11 15.77 ± 0.17 16.29 15.55 15.59 ± 0.09
208Pb 14.18 ± 0.11 13.50 ± 0.10 14.32 13.72 13.76 ± 0.08

Research Center for Nuclear Physics (RCNP) in Osaka, Japan
[63–67]. Here m1 and m−1 are suitable moments of the
strength distribution that represent the energy-weighted and
inverse-energy-weighted sums, respectively. The theoretical
results listed on the table were obtained by following the
constrained RMF formalism developed in Ref. [68]. Moreover,
it was found in Ref. [69] that pairing correlations have a very
minor impact on the GMR energies. Therefore, pairing was not
included in the case of the open-shell nuclei 116Sn and 144Sm.
The same information has been displayed in graphical form in
Fig. 1. Note that the red solid line in the figure represents a fit
to the FSU2 predictions of the form Efit = 72.8 A−0.31 MeV;
this compares favorably against the macroscopic expectation
of EGMR ≈ 80A−1/3 MeV [70,71]. We find both intriguing
and unsettling that the TAMU and RCNP data—particularly
for 208Pb—are inconsistent with each other. Given the critical
nature of this information, we trust that the discrepancy may be
resolved in the near future. In the meantime, and to account for
the experimental discrepancy, we have adopted slightly larger
errors in the optimization of the functional, namely, 2% for
90Zr and 1% for the rest.
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FIG. 1. (Color online) Constrained giant monopole energies for
90Zr, 116Sn, 144Sm, and 208Pb. Experimental data were obtained
from experiments carried out at TAMU [62] and RCNP [63–67].
Theoretical predictions are presented for NL3 [8], FSUGold [10],
and FSUGold2 supplemented with theoretical errors. The red solid
line represents a best fit to the FSUGold2 predictions of the form
Efit = 72.8A−0.31 MeV.

Our results indicate that the predictions from FSU and
FSU2 are compatible with each other. This is consistent with
the notion that GMR energies probe the incompressibility
coefficient of SNM, that is, K (see Table IV). Moreover, with
the exception of 116Sn, both FSU and FSU2 reproduce the
experimental data, although they both favor the smaller RCNP
measurement in the case of 208Pb. Note that the answer to the
question of why tin is so soft [51,64,65] continues to elude
us to this day [69,72–78]. By the same token NL3, with a
significantly larger value of K than both FSU and FSU2,
overestimates the experimental data, except in the case of
the TAMU data for 208Pb [79]. Although, in principle, GMR
energies of neutron-rich nuclei probe the incompressibility
coefficient of neutron-rich matter [51], in practice the neutron-
proton asymmetry for these nuclei is simply too small to
provide any meaningful constraint on the density dependence
of the symmetry energy. This is the main reason behind the
agreement between FSU and FSU2, even though they predict
radically different values for the slope of the symmetry energy
L (see Table IV).

D. Neutron-star structure

The last observable that was included in the calibration
of the new FSU2 functional was the maximum neutron-star
mass. Displayed in Fig. 2 with horizontal bars are the two
most massive, and accurately measured, neutron stars [18,19].
Clearly, those observations place stringent constraints on the
high-density component of the EOS, as models that predict
limiting masses below 2M⊙—such as FSUGold—must be
stiffened accordingly. Therefore, for the optimization of the
FSU2 functional, we have adopted a value of Mmax = 2.10M⊙
with a relatively small 1% error. If required by future
observations, this input can be easily modified by a suitable
tuning of the quartic vector coupling constant ζ .

Also displayed in Fig. 2 are theoretical predictions for
the mass-vs-radius (M-R) relations for the three models
considered in the text. As alluded to earlier, with a stiff EOS
NL3 predicts large stellar radii and a maximum neutron-
star mass of almost 3M⊙. In contrast, FSUGold with a
relatively soft EOS predicts smaller values for both. The new
FSUGold2 functional displays a M-R relation that appears
intermediate between NL3 and FSUGold. In particular, after
the optimization we obtain a maximum stellar mass of Mmax =
(2.07 ± 0.02)M⊙, safely within the bounds set by observation.
Given the large impact that the quartic vector coupling constant
ζ has on the EOS at high densities, these results are totally
consistent with our expectations (see Table I). However, stellar
radii seem to be controlled by the density dependence of
the symmetry energy in the immediate vicinity of saturation
density [80]. Thus, models with large values of L tend to
predict neutron stars with large radii [47]. This is the main
reason behind the relatively uniform “shift” between FSU
and FSU2 (see Table IV). It is important to realize that no
observable highly sensitive to the density dependence of the
symmetry energy, such as the neutron-skin thickness of 208Pb
or stellar radii, was used in the calibration of FSU2. Such
a choice was deliberate, as at present there are no stringent
experimental or observational constraints on the isovector
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TABLE I. Model parameters for the newly optimized FSUGold2 relativistic EDF along with two accurately calibrated RMF models: NL3
[8] and FSUGold [10]. The parameter κ and the meson masses ms, mv, and mρ are all given in MeV. The nucleon mass has been fixed at
M = 939 MeV in all the models.

Model ms mv mρ g2
s g2

v g2
ρ κ λ ζ %v

NL3 508.194 782.501 763.000 104.3871 165.5854 79.6000 3.8599 −0.015 905 0.0000 0.000 000
FSU 491.500 782.500 763.000 112.1996 204.5469 138.4701 1.4203 +0.023 762 0.0600 0.030 000
FSU2 497.479 782.500 763.000 108.0943 183.7893 80.4656 3.0029 −0.000 533 0.0256 0.000 823

such case, the overall quality of the EDF would be poor, as
binding energies and charge radii would be well reproduced
at the expense of all remaining observables. Therefore, to
mitigate this deficiency one should manipulate the errors in
such a way that the relative weights of all observables be
commensurate with each other. By necessity, this implies some
“trial and error” as there is no clear choice for the optimal
protocol [26]. The choice of error for each observable adopted
in the fit is discussed below.

Once the objective function has been properly defined
by specifying a theoretical model and a set of observables
with properly defined errors, the Levenberg-Marquardt method
was used to obtain the optimal set of parameters p =
(ms,ρ0,ε0,M

∗,K,J,L,ζ ). In turn, the model parameters q may
be obtained from the transformation outlined in the Appendix.
The resulting set of model parameters for the newly built
functional FSUGold2 (or “FSU2” for short) are displayed in
Table I. Also shown for comparison are two canonical sets
of parameters, NL3 [8] and FSUGold (or “FSU” for short)
[10]. Given that the EOS for symmetric nuclear matter and
the symmetry energy are both stiff in the case of NL3 and

TABLE II. Experimental data for the binding energy per nucleon
(in MeV) [60] and charge radius (in fm) [61] for all the nuclei involved
in the optimization. Also displayed are the theoretical results obtained
with NL3 [8], FSUGold [10], and FSUGold2.

Nucleus Observable Experiment NL3 FSU FSU2

16O B/A 7.98 8.06 7.98 8.00
Rch 2.70 2.75 2.71 2.73

40Ca B/A 8.55 8.56 8.54 8.54
Rch 3.48 3.49 3.45 3.47

48Ca B/A 8.67 8.66 8.58 8.63
Rch 3.48 3.49 3.48 3.47

68Ni B/A 8.68 8.71 8.66 8.69
Rch — 3.88 3.88 3.86

90Zr B/A 8.71 8.70 8.68 8.69
Rch 4.27 4.28 4.27 4.26

100Sn B/A 8.25 8.30 8.24 8.28
Rch — 4.48 4.48 4.47

116Sn B/A 8.52 8.50 8.50 8.49
Rch 4.63 4.63 4.63 4.61

132Sn B/A 8.36 8.38 8.34 8.36
Rch 4.71 4.72 4.74 4.71

144Sm B/A 8.30 8.32 8.32 8.31
Rch 4.95 4.96 4.96 4.94

208Pb B/A 7.87 7.90 7.89 7.88
Rch 5.50 5.53 5.54 5.51

both soft for FSU, such a comparison is very informative.
However, when comparing these models, one should keep in
mind that different models are calibrated using different sets
of observables and associated errors. This introduces some
inherent biases into the models that ultimately become an
important source of systematic errors.

B. Ground-state properties

We start this section by displaying in Table II ground-state
binding energies and charge radii for all the nuclei involved
in the optimization. Experimental data for these observables
were obtained from the latest atomic-mass evaluation [60] and
charge radii compilation [61], respectively. In turn, the errors
assigned to the binding energies and charge radii are 0.1%
and 0.2%, respectively. As mentioned earlier, these adopted
errors are several orders of magnitude larger than the quoted
experimental uncertainties [60,61]. Only by doing so can one
prevent the optimization from being dominated by these two
ground-state observables. Also displayed in Table II are the
theoretical predictions from all three models. Because the
influence of pairing correlations in both the binding energies
and charge radii are very small, we did not take pairing into
consideration for the open-shell nuclei 116Sn and 144Sm. Note
that the theoretical errors predicted by FSU2 (of about 1 part
in 1000) are too small to be displayed in the table. Also note
that the quoted theoretical value for the charge radius was
obtained by adding to the extracted nuclear point proton radius
the intrinsic charge radius of the proton r = 0.8783(86) fm
[61]. That is, Rch = (R2

p + r2)1/2. We can see that both the
binding energies and charge radii are very well reproduced
by all the models. In the particular case of FSU2, with the
exception of the charge radius of 16O, the discrepancy relative
to experiment is less than 0.5%. The slightly larger than 1%
deviation in the case of 16O should not come as a surprise, as
with only 16 nucleons oxygen barely qualifies as a “mean field”
nucleus. It is important to stress that neither binding energies
nor charge radii have a significant impact on the stiffness of
the EOS. Indeed, NL3 and FSU predict significantly different
stiffness for the EOS (see below), yet they both reproduce fairly
accurately the experimental results for these two observables.

C. Giant monopole resonances

In optimizing the FSUGold2 functional, we have also
incorporated GMR energies for 90Zr, 116Sn, 144Sm, and
208Pb. In Table III we display constrained GMR energies
EGMR =

√
m1/m−1 extracted from measurements at the Texas

A&M University (TAMU) cyclotron facility [62] and at the
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I. INTRODUCTION

Finite nuclei, infinite nuclear matter, and neutron stars are
complex, many-body systems governed largely by the strong
nuclear force. Although quantum chromodynamics (QCD) is
the fundamental theory of the strong interaction, enormous
challenges have prevented us from solving the theory in the
nonperturbative regime of relevance to nuclear systems. To
date, these complex systems can be investigated only in the
framework of an effective theory with appropriate degrees of
freedom. Among the effective approaches, the one based on
density functional theory (DFT) is most promising, as it is the
only microscopic approach that may be applied to the entire
nuclear landscape and to neutron stars. In the past decades nu-
merous energy density functionals (EDFs) have been proposed
which can be grouped into two main branches: nonrelativistic
and relativistic. Skyrme-type functionals are the most popular
ones within the nonrelativistic domain, where nucleons inter-
act via density-dependent effective potentials. Using such a
framework, the Universal Nuclear Energy Density Functional
(UNEDF) Collaboration [1] aims to achieve a comprehensive
understanding of finite nuclei and the reactions involving them
[2–4]. On the other end, relativistic mean field (RMF) models,
based on a quantum field theory having nucleons interacting
via the exchange of various mesons, have been successfully
used since the 1970s and provide a covariant description of
both infinite nuclear matter and finite nuclei [5–10].

*wc09c@my.fsu.edu
†jpiekarewicz@fsu.edu

In the traditional spirit of effective theories, both nonrel-
ativistic and relativistic EDFs are calibrated from nuclear
experimental data that is obtained under normal laboratory
conditions, namely, at or slightly below nuclear saturation
density and with small to moderate isospin asymmetries.
The lack of experimental data at both higher densities and
with extreme isospin asymmetries leads to a large spread
in the predictions of the models, even when they may all
be calibrated to the same experimental data. Consequently,
fundamental nuclear properties, such as the neutron density
of medium-to-heavy nuclei [11–14], proton and neutron drip
lines [15,16], and a variety of neutron-star properties [17–19],
remain largely undetermined.

It has been a common practice for a long time to supplement
experimental results with uncertainty estimates. Indeed, no
experimental measurement could ever be published without
properly estimated “error bars.” Often, the most difficult part
of an experiment is a reliable quantification of systematic
errors, and improving the precision of the measurement
consists of painstaking efforts at reducing the sources of such
uncertainties. On the contrary, theoretical predictions merely
involve reporting a “central value” without any information on
the uncertainties inherent in the formulation or the calculation.
Thus, to determine whether a theory is successful or not, the
only required criterion is to reproduce the experimental data.
Although this approach has certain value—especially if the
examined model reproduces a vast amount of experimental
data—such a criterion is often neither helpful nor meaningful.
The situation becomes even worse if the predictions of an
effective theory are extrapolated into unknown regions, such
as the boundaries of the nuclear landscape and the interior
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complex, many-body systems governed largely by the strong
nuclear force. Although quantum chromodynamics (QCD) is
the fundamental theory of the strong interaction, enormous
challenges have prevented us from solving the theory in the
nonperturbative regime of relevance to nuclear systems. To
date, these complex systems can be investigated only in the
framework of an effective theory with appropriate degrees of
freedom. Among the effective approaches, the one based on
density functional theory (DFT) is most promising, as it is the
only microscopic approach that may be applied to the entire
nuclear landscape and to neutron stars. In the past decades nu-
merous energy density functionals (EDFs) have been proposed
which can be grouped into two main branches: nonrelativistic
and relativistic. Skyrme-type functionals are the most popular
ones within the nonrelativistic domain, where nucleons inter-
act via density-dependent effective potentials. Using such a
framework, the Universal Nuclear Energy Density Functional
(UNEDF) Collaboration [1] aims to achieve a comprehensive
understanding of finite nuclei and the reactions involving them
[2–4]. On the other end, relativistic mean field (RMF) models,
based on a quantum field theory having nucleons interacting
via the exchange of various mesons, have been successfully
used since the 1970s and provide a covariant description of
both infinite nuclear matter and finite nuclei [5–10].
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In the traditional spirit of effective theories, both nonrel-
ativistic and relativistic EDFs are calibrated from nuclear
experimental data that is obtained under normal laboratory
conditions, namely, at or slightly below nuclear saturation
density and with small to moderate isospin asymmetries.
The lack of experimental data at both higher densities and
with extreme isospin asymmetries leads to a large spread
in the predictions of the models, even when they may all
be calibrated to the same experimental data. Consequently,
fundamental nuclear properties, such as the neutron density
of medium-to-heavy nuclei [11–14], proton and neutron drip
lines [15,16], and a variety of neutron-star properties [17–19],
remain largely undetermined.

It has been a common practice for a long time to supplement
experimental results with uncertainty estimates. Indeed, no
experimental measurement could ever be published without
properly estimated “error bars.” Often, the most difficult part
of an experiment is a reliable quantification of systematic
errors, and improving the precision of the measurement
consists of painstaking efforts at reducing the sources of such
uncertainties. On the contrary, theoretical predictions merely
involve reporting a “central value” without any information on
the uncertainties inherent in the formulation or the calculation.
Thus, to determine whether a theory is successful or not, the
only required criterion is to reproduce the experimental data.
Although this approach has certain value—especially if the
examined model reproduces a vast amount of experimental
data—such a criterion is often neither helpful nor meaningful.
The situation becomes even worse if the predictions of an
effective theory are extrapolated into unknown regions, such
as the boundaries of the nuclear landscape and the interior
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FIG. 4. (Color online) (a) Binding energy per nucleon of sym-
metric nuclear matter and (b) symmetry energy as a function of
density in units of nuclear-matter saturation density ρ0 = 0.148 fm−3.
Predictions are included from the three models discussed in the
text: NL3 [8], FSUGold [10], and FSUGold2 supplemented with
theoretical errors.

EOS of SNM (left panel) and the symmetry energy (right
panel) are displayed for the three RMF models considered
in this work. Owing to the inclusion of GMR energies into
the calibration of FSUGold2, the incompressibility coefficient
was fairly accurately determined (see Table IV) and this, in
turn, generates small theoretical errors on the EOS up to 2–3
times saturation density. The larger theoretical uncertainty
with increasing density is a reflection of the inability of
ground-state properties and GMR energies to constrain the
high-density behavior of the EOS. In principle, the inclusion
of a maximum neutron-star mass Mmax into the fit should have
served to constrain the EOS at high density. However, given
that the symmetry energy is stiff (see right-hand panel), one
can satisfy the Mmax constraint without imposing stringent
limits on the EOS of SNM at high densities. However, the
situation is radically different in the case of the symmetry
energy, as the model has lost its predicability at densities
only slightly above saturation density. Although we expect to
mitigate this situation once strong isovector observables, such
as neutron skins and stellar radii, are incorporated into the
calibration of the density functional, our results underscore
the importance of including theoretical uncertainties. Whereas
the symmetry energy predicted by FSUGold2 is stiff at
saturation density, it is consistent at the 1σ level with a
symmetry energy almost as soft as FSUGold and as stiff as
(or even stiffer than) NL3 at high densities. The impact of a
stiff symmetry energy on the neutron-skin thickness of all the
nuclei used in the calibration procedure is displayed in Table V.
These results help to reinforce the recent claim that, at present,
there is no compelling reason to rule out models with large
neutron skins [89]. We close this part of the discussion with
a brief comment on the EOS of PNM. Given that the EOS of
PNM may be approximated as that of SNM plus the symmetry
energy, the EOS of PNM at low densities for FSUGold2
strongly resembles the one for NL3. Although PNM is not
experimentally accessible, there are important theoretical
constraints that have emerged from the universal behavior of
dilute Fermi gases in the unitary limit [33]. As mentioned

TABLE V. Predictions for the neutron skins, Rskin ≡ Rn − Rp (in
fm), of all the nuclei included in the calibration procedure for NL3
[8], FSUGold [10], and FSUGold2 supplemented with theoretical
error bars.

Nucleus NL3 FSU FSU2

16O −0.028 −0.029 −0.028 ± 0.005
40Ca −0.049 −0.051 −0.050 ± 0.004
48Ca 0.226 0.197 0.232 ± 0.008
68Ni 0.261 0.211 0.268 ± 0.010
90Zr 0.114 0.088 0.117 ± 0.008
100Sn −0.076 −0.080 −0.077 ± 0.008
116Sn 0.167 0.122 0.172 ± 0.011
132Sn 0.346 0.271 0.354 ± 0.019
144Sm 0.145 0.103 0.149 ± 0.011
208Pb 0.278 0.207 0.287 ± 0.020

earlier, without additional isovector constraints the symmetry
energy predicted by RMF models tends to be fairly stiff. There-
fore, whereas FSUGold is consistent with most theoretical
constraints [33–35,90], both FSUGold2 and NL3 are not.

So far, we have discussed the results from the optimization
and the theoretical errors associated with a large number
of physical quantities. We now turn the discussion to the
important topic of correlations based on Eqs. (14) and (15).
We start in Fig. 5 by displaying correlation coefficients in
graphical form for various physical quantities. From these,
only GMR energies and the maximum neutron-star mass
were included in the calibration procedure. As anticipated,
we find a strong correlation of the GMR energies to
the nuclear incompressibility coefficient K , verifying the

FIG. 5. Correlation coefficients (in absolute value) depicted in
graphical form for a representative set of observables. The set includes
four GMR energies (for 90Zr, 116Sn, 144Sm, and 208Pb), two neutron
radii (for 48Ca and 208Pb), several bulk properties of nuclear matter
(ε0 , ρ0 , M∗, K , J , and L), and two neutron-star observables (the
maximum mass Mmax and the radius of a 1.4M⊙ neutron star R1.4).
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PREX@JLAB: First electroweak (clean!) 
evidence in favor of Rskin in Pb 

Precision hindered by radiation issues
Excellent control of systematic uncertainties
Statistical uncertainties 3 times larger than promised

PREX-II and CREX to run in 2018
Original goal of 1% in neutron radius

Neutron Radii via PV Electron Scattering Donnelly, Dubach, Sick, NPA 503, 589 (1989)

Charge (proton) densities known with enormous precision
Charge density probed via parity-conserving eA scattering

Weak-charge (neutron) densities poorly known
Large and uncontrolled hadronic uncertainties
Weak-charge density probed via parity-violating eA scattering
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The incompressibility of neutron rich matter: 
Why is tin so fluffy?
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The distribution of isoscalar monopole strength in the neutron-even 112–124Sn isotopes has been computed using

a relativistic random-phase-approximation approach. The accurately-calibrated model used here (“FSUGold”)

has been successful in reproducing both ground-state observables as well as collective excitations—
including the

giant monopole resonance (GMR) in 90Zr, 144Sm, and 208Pb. Yet this same model significantly overestimates the

GMR
energies in the Sn isotopes. It is argued that the question of “Why is tin so soft?” becomes an important

challenge to the field and one that should be answered without sacrificing the success already achieved by several

theoretical models.
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The compression modulus of nuclear matter (also known as

the nuclear incompressibility) is a fundamental parameter of

the equation of state that controls small density fluctuations

around
the

saturation
point. While

existing
ground-state

observables have accurately constrained the binding energy

per nucleon
(B/A ≃ −16

MeV) and
the

baryon
density

(ρ ≃
0.15 fm −3) of symmetric nuclear matter at saturation, the

extraction of the compression modulus (K) requires to probe

the response of the nuclear system to small density fluctuations.

It is generally agreed that the nuclear compressional modes—

particularly the isoscalar giant monopole resonance (GMR)—

provide the optimal route to the determination of the nuclear

incompressibility [1]. Moreover, the field has attained a level

of maturity and sophistication that demands strict standards in

doing so. It is now demanded that the same microscopic model

that predicts a particular value for the compression modulus

of infinite
nuclear matter (an

experimentally
inaccessible

quantity) be able to accurately reproduce the experimental

distribution of monopole strength.

Earlier attempts at extracting the compression modulus of

symmetric nuclear matter relied primarily on the distribution

of isoscalar monopole strength
in 208Pb—

a heavy
nucleus

with a well developed giant resonance peak [2,3]. However,

as was pointed out recently in Refs. [4,5]—
and confirmed

since then by several other groups [6–8]—
the GMR

in 208Pb

does not provide a clean determination of the compression

modulus of symmetric nuclear matter. Rather, it constraints

the nuclear incompressibility of neutron-rich matter at the

particular value of the neutron excess found in 208Pb, namely,

b ≡
(N −

Z)/A =
0.21. As

such, the
GMR

in 208Pb
is

sensitive to the density dependence of the symmetry energy.

The symmetry energy represents a penalty levied on the system

as it departs from
the symmetric limit of equal number of

neutrons and protons. As the infinite nuclear system
becomes

neutron rich, the saturation density moves to lower densities,

the binding energy weakens, and the nuclear incompressibility

softens [9]. Thus, the compression modulus of a neutron rich

system
having the same neutron excess as 208Pb is lower than

the compression modulus of symmetric nuclear matter. We

note in passing that the symmetry energy is to an excellent

approximation equal to the difference between the energy of

pure neutron matter (with b ≡
1) and that of symmetric nuclear

matter (with b ≡
0).

The
alluded

sensitivity
of the

distribution
of isoscalar

monopole strength to the density dependence of the symmetry

energy proved instrumental in resolving a puzzle involving K:

how
can accurately calibrated models that reproduce ground

state data as well as the distribution of monopole strength in

208Pb, predict values for K
that differ by as much as 25%?

(Note that accurately-calibrated relativistic models used to

predict a compression
modulus as high

as
K ≈

270
MeV

while their nonrelativistic counterpart suggested values as low

as K ≈
215 MeV.) This discrepancy is now

attributed to the

poorly determined density dependence of the symmetry energy

[4]. Indeed, models that predict a stiffer symmetry energy (one

that increases faster with density) consistently predict higher

compression moduli than those with a softer symmetry energy.

Thus, the success of some models in reproducing the GMR in

208Pb was accidental, as it resulted from
a combination of both

a stiff equation of state for symmetric nuclear matter and a stiff

symmetry energy [5]. Since then, the large differences in the

predicted value of K
have been reconciled and a “consensus”

has been reached that places the value of the incompressibility

coefficient of symmetric nuclear matter atK =
230 ±

10 MeV

[7,8,10,11]. Note that while some Skyrme and
relativistic

mean-field models do not display a clear correlation between

K
and the density dependence of the symmetry energy [12],

we trust that once those models are further constrained to

reproduce the experimental distribution of isoscalar monopole

strength
in 208Pb, the

alluded
correlation

will reemerge

[4,5].An example of how this consensus was reached is depicted

in Fig. 1 where the distribution of isoscalar monopole strength

in 90Zr, 116Sn, 144Sm, and 208Pb
at the small momentum

transfer of q =
45.5 MeV

(or q =
0.23 fm −1) is displayed

for the relativistic FSUGold model of Ref. [10]—
a model that

predicts an incompressibility coefficient for symmetric nuclear

matter of K =
230 MeV. Note that the distribution of strength

was obtained from
a relativistic random-phase-approximation

(RPA) approach as described in detail in Ref. [13]. Further,

the inset on Fig. 1 shows a comparison of the theoretical

predictions against the experimental centroid energies reported
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We have calculated the strength distributions of the isoscalar giant monopole resonance (ISGMR) in the even-A

tin isotopes (A =
112–124) that were recently measured in inelasticα scattering. The calculations were performed

within two microscopic models: the quasiparticle random
phase approximation (QRPA) and the quasiparticle

time blocking approximation (QTBA), which is an extension of the QRPA
including quasiparticle-phonon

coupling. We used a self-consistent calculational scheme based on the Hartree-Fock+Bardeen-Cooper-Schrieffer

approximation. Within the RPA the self-consistency is full. The single-particle continuum
is also exactly included

at the RPA level. The self-consistent mean field and the effective interaction are derived from
the Skyrme energy

functional. In the calculations, two Skyrme force parametrizations were used: T5 with a comparatively low value

of the incompressibility modulus of infinite nuclear matter (K
∞ =

202 MeV) and T6 with
K

∞ =
236 MeV.

The T5 parametrization gives theoretical results for tin isotopes in good agreement with the experimental data

including the resonance widths. The results of the ISGMR calculations in 90Zr, 144Sm, and 208Pb performed with

these Skyrme forces are discussed and compared with the experiment.
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I. INTRODUCTION

The investigation of the isoscalar giant monopole resonance

(ISGMR), the so-called breathing mode, is one of the funda-

mental problems of nuclear physics. The energy of the ISGMR

enables one to determine parameters characterizing the incom-

pressibility of infinite nuclear matter (INM), in particular, the

value of the incompressibility modulus
K

∞ , which in turn

is a universal characteristic of the effective nuclear forces.

These collective resonances can
be studied

experimentally

in inelastic
α

scattering at small angles (see, e.g., Ref. [1]

and
references therein). Theoretical investigations of these

states are based mainly on (i) the self-consistent microscopic

approaches (see, e.g., Refs. [2–12]), including scaling and

constrained Hartree-Fock (HF) methods and the random
phase

approximation (RPA), and (ii) the Landau-Migdal approach,

which starts with a phenomenological single-particle basis and

with the independently parametrized particle-hole zero-range

interaction (see, e.g., Refs. [13–15] and references therein).

It is important to
note that the incompressibility

modulus

K
∞

cannot be
measured

directly
but it can

be
deduced

theoretically by comparing the experimental energies of the

ISGMR
with the corresponding calculated values. The most

widely
used

approach
is based

on
the

self-consistent HF

or RPA
calculations of the mean

energies of the ISGMR

using effective Skyrme or Gogny forces. Because
K

∞
can

be calculated from
the known parameters of the given force,

its value is estimated as the one corresponding to the force

that gives the best description of the experimental data. The

nonrelativistic estimates obtained in such a way lead to the

value K
∞ =

210 ±
30 MeV (see, e.g., Refs. [2,4–10]), though

the recent results testify to the upper limit of this estimate (see

Refs. [11,12]). In the Landau-Migdal approach one obtains

K
∞

from
the scalar-isoscalar Landau-Migdal parameter f

0 .

Here K
∞ was always of the order of 240 MeV

[13].

Note that within the relativistic mean-field (RMF) theory

the
INM

incompressibility
is usually

restricted
to

the
in-

terval K
∞ =

260 ±
10 MeV

(see, e.g., Ref. [16]), which is

considerably higher than the nonrelativistic limits. However,

recently a zero-range (point-coupling) representation of the

effective nuclear interactions in
the RMF

framework
was

found
to

lead
to

the reduction
of

K
∞

up
to

the value of

230 MeV
[17].

In
the

present paper
we

investigate
theoretically

the

experimental data [18] on the strength distributions of the

ISGMR
in the even-A

tin isotopes (A =
112–124) that were

recently measured with inelastic scattering of α
particles at

RCNP (Osaka University). This is the main goal of our work.

The calculations are performed within the framework of the

recently developed microscopic model that takes into account

the effects of the quasiparticle-phonon
coupling

(QPC) in

addition to the usual correlations included in the conventional

RPA.The paper is organized as follows. In Sec. II the model is

described, with particular attention paid to dynamical pairing

effects, which are important for solving the problem
of the 0 +

spurious state in the ISGMR calculations in open-shell nuclei.

In Sec. III we describe the details of our calculational scheme

and present and discuss the results. Conclusions are drawn in

the last section. Appendices contain auxiliary formulas.
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Background: Following the 2007 precise measurements of monopole strengths in tin isotopes, there has been a
continuous theoretical effort to obtain a precise description of the experimental results. Up to now, there is no
satisfactory explanation of why the tin nuclei appear to be significantly softer than 208Pb.
Purpose: We determine the influence of finite-range and separable pairing interactions on monopole strength
functions in semimagic nuclei.
Methods: We employ self-consistently the quasiparticle random phase approximation on top of spherical Hartree-
Fock-Bogoliubov solutions. We use the Arnoldi method to solve the linear-response problem with pairing.
Results: We found that the difference between centroids of giant monopole resonances measured in lead and
tin (about 1 MeV) always turns out to be overestimated by about 100%. We also found that the volume
incompressibility, obtained by adjusting the liquid-drop expression to microscopic results, is significantly larger
than the infinite-matter incompressibility.
Conclusions: The zero-range and separable pairing forces cannot induce modifications of monopole strength
functions in tin to match experimental data.

DOI: 10.1103/PhysRevC.86.024303 PACS number(s): 24.30.Cz, 21.30.Fe, 21.60.Jz, 21.65.−f

I. INTRODUCTION

The incompressibility of infinite nuclear matter as well as
of finite nuclei has been studied in a number of theoretical
papers and reviews. In the classic review by Blaizot [1] the
connection between the finite-nucleus incompressibility and
centroid of the giant monopole resonance (GMR) was shown.
This relation allows us to study incompressibility of nuclei
through microscopic calculations of the monopole excitation
spectra. It also brings us the possibility to directly compare
theoretical results with experimental data. For examples, see
the measurements presented in Refs. [2–4].

In Ref. [5], it was shown that the self-consistent models that
succeed in reproducing the GMR energy in the doubly magic
nucleus 208Pb systematically overestimate the GMR energies
in the tin isotopes. In spite of many studies related to the
isospin [6–8], surface [9], and pairing [10–16] influence on
the nuclear incompressibility, to date there is no theoretical
explanation of the question “Why is tin so soft?” [5,17]. For
an excellent recent review of the subject matter we refer the
reader to Ref. [4].

Studies in Refs. [14,15] were restricted to the effect of
zero-range pairing interaction. In the present paper we focus
on a different kind of pairing force, namely, we implement the
finite-range, fully separable, translationally invariant pairing
interaction of the Gaussian form [18–20], together with the
general phenomenological quasilocal energy density func-

*petr.p.vesely@jyu.fi

tional in the ph-channel [21]. We have performed calculations
for all particle-bound semimagic nuclei starting from Z = 8 or
N = 8, up to Z = 82 or N = 126. The ground-state properties
were explored within the Hartree-Fock-Bogoliubov (HFB)
method, whereas the monopole excitations were calculated
by using the quasiparticle random phase approximation
(QRPA) within the Arnoldi iteration scheme [22]. For the
numerical solutions, we used an extended version of the code
HOSPHE [23].

The paper is organized as follows. In Secs. II and III, we
briefly outline the Arnoldi method to solve the QRPA equations
and present the separable pairing interaction, respectively. In
Sec. IV, we discuss the nuclear incompressibility, including its
theoretical description, definitions in finite and infinite nuclear
matter, and relations to monopole resonances. Then, our results
are shown and discussed in Sec. V and conclusions are given
in Sec. VI, whereas the Appendix presents numerical tests of
the approach.

II. QRPA METHOD

In the present study, we solve the QRPA equations by using
the iterative Arnoldi method, implemented in Ref. [22]. It
provides us with an extremely efficient and fast way to solve the
QRPA equations. The QRPA equations are well known [24,25]
and have been recently reviewed in the context of the finite
amplitude method (FAM) [26]. Therefore, here we only give a
brief resumé of basic equations, by presenting their particularly
useful and compact form.

024303-10556-2813/2012/86(2)/024303(9) ©2012 American Physical Society

Isotopic Dependence of the Giant Monopole Resonance in the Even-A 112–124Sn Isotopes
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The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A
Sn isotopes (A ! 112–124) with inelastic scattering of 400-MeV ! particles in the angular range 0" –8.5".
We find that the experimentally observed GMR energies of the Sn isotopes are lower than the values
predicted by theoretical calculations that reproduce the GMR energies in 208Pb and 90Zr very well. From
the GMR data, a value of K" ! #550$ 100 MeV is obtained for the asymmetry term in the nuclear
incompressibility.
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Incompressibility of nuclear matter remains a focus of
experimental and theoretical investigations because of its
fundamental importance in defining the equation of state
(EOS) for nuclear matter. The latter describes a number of
interesting phenomena from collective excitations of nu-
clei to supernova explosions and radii of neutron stars [1].
The giant monopole resonance (GMR) provides a direct
means to experimentally determine this quantity.

Experimental identification of the GMR requires inelas-
tic scattering of an isoscalar particle at extremely forward
angles, including 0", where the cross section for exciting
the GMR is maximal. Such measurements have improved
considerably over the years, and it is now possible to obtain
inelastic spectra virtually free of all instrumental back-
ground directly [2] and in coincidence with proton and
neutron decay [3]. In recent work, the GMR strength
distributions have been extracted in many nuclei from a
multipole-decomposition analysis (MDA) of such
‘‘background-free’’ inelastic !-scattering spectra [2,4–9].

The excitation energy of the GMR is expressed in the
scaling model [10] as

 EGMR ! @
!!!!!!!!!!!!
KA
mhr2i

s
; (1)

wherem is the nucleon mass, hr2i is the ground-state mean-
square radius, and KA is the incompressibility of the nu-
cleus. In order to determine the incompressibility of infi-
nite nuclear matter, K1, from the experimental GMR
energies, one builds a class of energy functionals, E%#&,
with different parameters that allow calculations for nu-

clear matter and finite nuclei in the same theoretical frame-
work. The parameter set for a given class of energy
functionals is characterized by a specific value of K1.
The GMR strength distributions are obtained for different
energy functionals in a self-consistent RPA calculation.
TheK1 associated with the interaction that best reproduces
the GMR energies is, then, considered the ‘‘correct’’ value.
This procedure, first proposed by Blaizot [11], is now
accepted as the best way to extract K1 from the GMR
data, and it has been established that both relativistic and
nonrelativistic calculations are now in general agreement
with K1 ! 240$ 10 MeV [12–14].

The determination of the asymmetry term, K", associ-
ated with the neutron excess (N # Z), remains very im-
portant because this term is crucial in obtaining the radii of
neutron stars in EOS calculations [15–18]. Indeed, the
radius of a neutron star whose mass is between about 1
and 1.5 solar masses (M') is mostly determined by the
density dependence of the symmetry-energy term [19,20].
Previous attempts to extract this term from experimental
GMR data have resulted in widely different values, from
#320$ 180 MeV in Ref. [21] to a range of #566$
1350 MeV to 139$ 1617 MeV in Ref. [22]. Measure-
ments of the GMR over a series of isotopes provide a
way to ‘‘experimentally’’ determine this asymmetry term
in a direct manner. The Sn isotopes (A ! 112–124) afford
such an opportunity since the asymmetry ratio, [%N #
Z&=A], changes by more than 80% over this mass range.

In this Letter, we report on new measurements on GMR
in the even-A Sn isotopes. The GMR has been identified
previously in some of the Sn isotopes as a compact peak in
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The isoscalar giant monopole resonance (GMR) has been investigated in a series of
Sn isotopes (A=112–124) using inelastic scattering of 400-MeV α particles at extremely
forward angles (including 0◦). The primary aim of the investigation has been to explore
the role of the “symmetry-energy” term in the expression for nuclear incompressibility.
It is found that the excitation energies of the GMR in the Sn isotopes are significantly
lower than those expected from the nuclear incompressibility previously extracted from
the available data on the compressional-mode giant resonances.

The investigation of the compressional-mode giant resonances—the Isoscalar Giant
Monopole Resonance (GMR) and the Isoscalar Giant Dipole Resonance (ISGDR), an
exotic compressional mode of nuclear oscillation—continues to remain an active area of
work and interest. The primary motivation for the investigation of these modes is that
they provide a direct experimental determination of the incompressibility of infinite nu-
clear matter, K∞, a quantity of critical importance to understanding the nuclear equation
of state.

Experimental identification of these two modes requires inelastic scattering measure-
ments at extremely-forward angles (including 0◦, where the GMR Cross sections are maxi-
mal). Recent experimental work, using inelastic scattering of α particles, has been carried
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A
self-consistent quasiparticle random-phase approximation

(QRPA) model that employs the canonical

Hartree-Fock-Bogoliubov (HFB) basis and an energy-density functional with a Skyrme mean-field part and

a density-dependent pairing is used to study the monopole collective excitations of spherical even-even nuclei.

The influence of the spurious state on the strength function of the isoscalar monopole excitations is clearly

assessed. We compare the effect of different kinds of pairing forces (volume pairing, surface pairing, and mixed

pairing) on the monopole excitation strength function. The energy of the isoscalar giant monopole resonance

(ISGMR), which is related to the nuclear incompressibility K
∞ , is calculated for tin isotopes and the results are

discussed.
DOI: 10.1103/PhysRevC.78.064304
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I. INTRODUCTION

The nuclear structure community have made great achieve-

ments in understanding the structure of the ground state and

of the excited states of stable atomic nuclei. As radioactive

beams provide more experimental results on the nuclei far

from
the stability valley, the challenge is how

to extrapolate

the theoretical models and predict or describe in detail the

exotic properties of the nuclei with large neutron or proton

excess. Another challenge is the prediction of the properties of

nuclear matter in a broad range of densities, i.e., in connection

with neutron stars, and to understand the origin of these new

properties.
For medium-mass and heavy nuclei, the most microscopic

models that we can
use are the mean-field

models based

on the effective interactions, either in the nonrelativistic or

relativistic framework. For closed-shell nuclei, Hartree-Fock

(HF) theory has already been proven to be a powerful tool to

describe the properties of ground states [1], in particular using

the zero-range Skyrme interactions [2–6]. In the open-shell

nuclei, the effect of nuclear pairing shows up. A simple theory

for the ground-state pairing is HF+Bardeen-Cooper-Schriffer

(BCS) [7]. The nuclei close to the neutron or proton drip lines

may exhibit some very unusual features such as the neutron

or proton skin [8] and the neutron haloes [9]. In these very

neutron-rich
or proton-rich

nuclei, nuclear pairing
plays a

crucial role for the theoretical understanding of these new

phenomena [10–14]. A
more appropriate theory is the HFB

approach [1] because the pairing component can no longer

be treated as a residual interaction, i.e., a small perturbation

*jun.li@mi.infn.it

†gianluca.colo@mi.infn.itd

‡mengj@pku.edu.cn

important only
in

the neighborhood
of the Fermi surface,

as in
the

nuclei close
to

the
line

of
β

stability. This is

seen from
the approximate HFB relations between the Fermi

level λ, pairing gap
#, and the particle separation energy

s:

s ≈ −
λ −

#, because
s is very

small and
λ +

# ≈
0, for

drip-line nuclei. Consequently, the mean-field characterized

by
λ

and the pairing field
#

are equally important. Using

appropriate effective interactions in mean field and pairing

field, the HFB
approach is already sophisticated enough to

allow
precise analysis of ground-state properties, i.e., binding

energies, average neutron pairing gaps, etc., in most nuclei

either using the Skyrme force plus a density-dependent pairing

force [15] or the finite-range pairing force [16,17].

Studying
the

nuclear
collective

excitations
is

another

important tool to
understand

the
structure

of nuclei and

predict the
exotic

properties
of nuclei far from

stability

valley or the properties of nuclear matter. The QRPA
is a

standard method for describing these collective excitations

in open-shell superconducting nuclei with stable mean-field

solutions [1,18]. Important nuclear collective excitations are

the nuclear compressional modes—
particularly the ISGMR—

which
provide the optimal route to

determine the nuclear

incompressibility [19–21]. Both nonrelativistic RPA
[22–24]

and relativistic RPA
or QRPA

[25,26] were recently used in

studying
the nuclear collective excitations and

the nuclear

incompressibility. However, the fully self-consistent QRPA,

formulated in the HFB canonical basis, which was introduced

and accurately tested using Skyrme energy density functionals

and density-dependent pairing functionals in Ref. [27] has

not been
applied

to
extract information

about the nuclear

incompressibility. If the models are characterized by a nuclear

incompressibility
K

∞
around

230 ∼
240

MeV
[or 250 ∼

270 MeV
in the case of relativistic mean field (RMF)], they

will give the right ISGMR
centroid energies compared with

the experimental data in 208Pb [19,25]. However, with these
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Workshop on Nuclear Incompressibility

University of Notre Dame
July 14-15, 2005

 

 

The Joint Institute for Nuclear Astrophysics (JINA) will organize a
2-day Workshop focused on Nuclear Incompressibility and the
Nuclear Equation of State, to be held at the University of Notre
Dame during July 14-15, 2005.

This meeting follows a similar Workshop held at Notre Dame in
January 2001, and the Symposium on Nuclear Equation of
State used in Astrophysics Models, held at the ACS meeting in
Philadelphia last Summer.

The primary aim of the Workshop is to bring together interested
physicists from the areas of Astrophysics, Giant Resonances, and
Heavy-Ion Reactions, to discuss current status of experiments and
theoretical models related to nuclear incompressibility and the
equation of state, and to explore what experiments might be
needed to clarify some of the outstanding issues.

Most of the Workshop will be devoted to talks, with a lot of time
allowed for discussions and interactions. In that spirit, we will
follow a somewhat flexible schedule for the talks.

There is no registration fee but participants are requested to
register via the webpage (www.jinaweb.org), so that we can
make appropriate arrangements.

For further information, please contact:
Kathy Burgess (kburgess@nd.edu)
or
Umesh Garg (garg@nd.edu)
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Outcome: A window into L through  
systematic measurements of the GMR across 

a long isotopic chain 
Onwards and upwards 

to GMRs  
in unstable nuclei!



Electric Dipole Polarizability

relativistic Coulomb excitation code and adopting parame-
ters of their strength distribution from data systematics [1],
were subtracted from the Coulomb cross sections prior to
converting into photo-neutron cross sections. In the top
right panel, a photo-neutron spectrum of the heaviest stable
tin isotope, 124Sn, measured in a real-photon absorption
experiment [17] is shown for comparison. The differences
between stable and radioactive tin isotopes at excitation
energies around 10 MeV are evident.

In order to extract quantitative information, a Lorentzian
distribution of photo-neutron cross section was tentatively
adopted to account for the GDR and a Gaussian (or alter-
natively a Lorentzian) distribution for the apparent low-
lying component; below, for convenience, the latter is
denoted as PDR. The two distributions are then trans-
formed back to the energy-differential Coulomb cross
section, folded with the detector response, and their pa-
rameters are found by !2 minimization against the experi-
mental data. In this way, positions, widths, and integrated
cross sections of both the PDR and GDR peaks are found.
The results of this procedure are shown in Fig. 2. The low-
energy shoulder of the GDR distribution in part arises be-
cause of the rapidly increasing flux of virtual photons to-
wards lower energies, but in part is also of an instrumental
nature due to the limited reconstruction efficiency (see
above) for the two-neutron decay channel; the latter effect

forms about 15% of the cross section observed around the
PDR.

A summary of the deduced PDR and GDR parameters is
given in Table I; data for the most neutron-rich stable tin
isotope, 124Sn, taken from [18] are added for comparison.
Deduced parameters for the PDR and GDR peaks are
quoted, i.e., peak energy !Emax", width (FWHM) and the
integral over the photo-neutron cross section !R"#". The
parameters for the PDR did not change significantly if
adopting either a Gaussian or a Lorentzian distribution.
Because of the finite energy resolution, only an upper limit
for the PDR width could be deduced. The errors as quoted
in Table I include the correlations among all fitted parame-
ters. As far as the giant dipole resonance parameters are
concerned, within error bars no significant deviations from
those known for the stable tin isotopes or stable isotopes in
the same mass region [1,18] are observed. The essential
difference compared to the dipole strength distribution of
the stable isotopes is manifested in the appearance of a
low-lying component as already noticed. The integrated
PDR cross section corresponds to 7(3)% and 4(3)% of the
value of the Thomas-Reiche-Kuhn energy-weighted sum
rule (EWSR) for 130Sn and 132Sn, respectively. The respec-
tive B!E1" " values amount to 3.2 and 1:9 e2 fm2 or to 4.3
and 2.7 Weisskopf units (W.u.), the latter calculated for a
neutron transition (for the definition of W.u. adopted here
see [1]). Having in mind the well-known strong suppres-
sion, compared to the Weisskopf estimate, of E1 single-
particle transitions, such large B!E1" values indicate that
the observed low-lying strength is either composed out of a
large number of single-particle transitions in a rather nar-
row energy interval or involves a coherent superposition of
transitions forming a new collective mode.

It should be remembered that the dipole strength is
measured only above the one-neutron separation threshold,
and thus only part of the low-lying strength may be covered
in the present experiment. In fact, recent real-photon mea-
surements on stable N # 82 isotones [10] revealed a con-
centration of E1 strength in bound states below the neutron
threshold, spread over excitation energies between 5.5 and
8 MeV. The integrated strength exhausts, however, less
than 1% of the EWSR. Real-photon scattering experiments
to bound states of the stable isotopes 116;124Sn uncovered a
concentration of E1 strength around 6.5 MeV with B!E1"
values, however, of only 0.20 and 0:35 e2 fm2, respectively
[19]. The QRPA calculations by Tsoneva et al. [4], which

TABLE I. Summary of the parameters deduced for the PDR
and GDR peaks. The parameters for 124Sn are from [18].

PDR GDR
Emax

[MeV]
FWHM
[MeV]

R
"#

[mb MeV]
Emax

[MeV]
FWHM
[MeV]

R
"#

[mb MeV]

124Sn $ $ $ $ $ $ $ $ $ 15.3 4.8 2080
130Sn 10.1(7) <3:4 130(55) 15.9(5) 4.8(1.7) 2680(410)
132Sn 9.8(7) <2:5 75(57) 16.1(7) 4.7(2.1) 2330(590)

FIG. 2 (color online). Left panels: energy differential, with
respect to excitation energy E%, electromagnetic dissociation
cross sections measured in 130Sn and 132Sn. Arrows indicate
the neutron-separation thresholds. Corresponding right panels:
deduced photo-neutron cross sections. The curves represent
fitted Gaussian (blue dashed line) and Lorentzian (green dash-
dotted line) distributions, assigned to the PDR (centroid indi-
cated by an arrow) and GDR, respectively, and their sum (red
solid line), after folding with the detector response. Top right
panel: photo-neutron cross section in the stable 124Sn isotope
measured in a real-photon absorption experiment; the solid red
line represents a Lorentzian distribution [17].
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Electric dipole polarizability 

IVGDR: The quintessential  
nuclear excitation

Out-of-phase oscillation of neutrons vs protons 
   Symmetry energy acts as restoring force 

Energy weighted sum rule largely model independent 

Inverse energy weighted sum strongly correlated to L  
    Actually … JaD strongly correlated to L 
    Important contribution from Pygmy resonance 

High quality data emerging from RCNP, GSI, HIGS 
    On a variety of nuclei such as Pb, Sn, Ni, Ca, … 
    and hopefully in the future along isotopic chains     



Neutron-Star Radii Compactness of Neutron Stars

Wei-Chia Chen* and J. Piekarewicz†

Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
(Received 27 May 2015; published 16 October 2015)

Recent progress in the determination of both masses and radii of neutron stars is starting to place
stringent constraints on the dense matter equation of state. In particular, new theoretical developments
together with improved statistical tools seem to favor stellar radii that are significantly smaller than those
predicted by models using purely nucleonic equations of state. Given that the underlying equation of state
must also account for the observation of 2M⊙ neutron stars, theoretical approaches to the study of the dense
matter equation of state are facing serious challenges. In response to this challenge, we compute the
underlying equation of state associated with an assumed mass-radius template similar to the “common
radius” assumption used in recent studies. Once such a mass-radius template is adopted, the equation of
state follows directly from the implementation of Lindblom’s algorithm; assumptions on the nature or
composition of the dense stellar core are not required. By analyzing mass-radius profiles with a maximum
mass consistent with observation and common radii in the 8–11 km range, a lower limit on the stellar radius
of a 1.4M⊙ neutron star of RNS ≳ 10.7 km is required to prevent the equation of state from violating
causality.

DOI: 10.1103/PhysRevLett.115.161101 PACS numbers: 26.60.-c, 21.60.Jz, 26.60.Kp

How subatomic matter organizes itself and what phe-
nomena emerge is one of the overarching questions guiding
the field of nuclear physics [1]. In the case of atomic nuclei,
the quest to answer this question requires understanding the
nature of the nuclear force and the limits of nuclear
existence. In the case of extended nucleonic matter, this
involves elucidating the nature of neutron stars and dense
nuclear matter. In this Letter, we focus on the latter.
Owing to the long-range nature of the Coulomb force,

extended nucleonic matter must be electrically neutral. As a
result, dense nuclear matter must be by necessity neutron
rich. This is because the electronic contribution to the
energy increases rapidly with density, so electron capture
becomes energetically advantageous. Given that such
extreme conditions of density and isospin asymmetry
cannot be realized in terrestrial experiments, neutron stars
have become unique laboratories for the exploration of
dense matter. This situation has created a strong synergy
between nuclear physics and astrophysics, that has been
cemented even further through an intimate interplay
between theory, experiment, and observation [2]. Indeed,
powerful telescopes operating at a variety of wavelengths
drive new theoretical and experimental efforts which in turn
suggest new observations.
A recent example of such a unique synergy is how

accurate measurements of massive neutron stars [3,4] have
informed nuclear models that fall under the general rubric
of density functional theory. Density functional theory
(DFT) offers a comprehensive—and likely unique—
framework to describe strongly interacting nuclear many-
body systems ranging from finite nuclei to neutron stars.
Rooted on the seminal work by Kohn and collaborators

[5], DFT shifts the focus from the complicated many-body
wave function to the much simpler one-body density. The
implementation of DFT to nuclear physics requires that
the parameters of the model—which encode some of the
complicated many-body dynamics—be determined by
fitting directly to experimental data. In this regard, the
accurate measurement of neutron star masses has been vital
to the accurate calibration of some modern energy density
functionals [6–8].
Whereas the determination of neutron star masses is

accurate and beyond question, attempts to reliably extract
stellar radii [9–11] have been hindered by large systematic
uncertainties that resulted in an enormous disparity in
stellar radii—ranging from as low as 8 km [9] all the
way to 14 km [11]. It appears, however, that since those
first analyzes were performed, the situation has signifi-
cantly improved in the past few years through a better
understanding of systematic uncertainties, important theo-
retical developments, and the implementation of robust
statistical methods [12–16]. Although a consensus has yet
to be reached, these recent studies seem to favor stellar radii
in the 9–11 km range. Particularly intriguing among these
are the results by Guillot and collaborators that suggest a
“common radius” of RNS ¼ 9.1þ1.3

−1.5 km for all five quies-
cent low mass x-ray binaries used in their analysis [12]; this
common-radius value has been slightly revised to RNS ¼
ð9.4$ 1.2Þ km [15]. What makes this result especially
provocative is that satisfying the small radius and large
mass constraints simultaneously is enormously challeng-
ing. Indeed, to our knowledge no optimized energy density
functional can simultaneously reproduce both of these
constraints. And from the very large number of models
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Guillot et al., assume all neutron stars share a common radius 
Assumption in MR observable rather than on the EOS
One-to-one correspondence between EOS and MR  
TOV equation + EOS          Unique MR relation
Lindblom’s inversion algorithm shows the inverse also true! [APJ 398, 569 (1992)] 
TOV equation + MR            Unique Equation of State
For a given “common” radius MR profile examine whether: 
Resulting EOS is causal or superluminal for stellar masses below 2   
For a given “common” radius MR profile, to prevent causality violations 
Stellar radius of a 1.4       must exceed 10.7 km!M�
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"We have detected gravitational waves; we did it" 
David Reitze, February 11, 2016

The dawn of gravitational wave astronomy 
Initial black hole masses are 36 and 29 solar masses
Final black hole mass is 62 solar masses;  
3 solar masses radiated in GW!  

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 × 10−21. It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater
than 5.1σ. The source lies at a luminosity distance of 410þ160

−180 Mpc corresponding to a redshift z ¼ 0.09þ0.03
−0.04 .

In the source frame, the initial black hole masses are 36þ5
−4M⊙ and 29þ4

−4M⊙, and the final black hole mass is
62þ4

−4M⊙, with 3.0þ0.5
−0.5M⊙c2 radiated in gravitational waves. All uncertainties define 90% credible intervals.

These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

I. INTRODUCTION

In 1916, the year after the final formulation of the field
equations of general relativity, Albert Einstein predicted
the existence of gravitational waves. He found that
the linearized weak-field equations had wave solutions:
transverse waves of spatial strain that travel at the speed of
light, generated by time variations of the mass quadrupole
moment of the source [1,2]. Einstein understood that
gravitational-wave amplitudes would be remarkably
small; moreover, until the Chapel Hill conference in
1957 there was significant debate about the physical
reality of gravitational waves [3].
Also in 1916, Schwarzschild published a solution for the

field equations [4] that was later understood to describe a
black hole [5,6], and in 1963 Kerr generalized the solution
to rotating black holes [7]. Starting in the 1970s theoretical
work led to the understanding of black hole quasinormal
modes [8–10], and in the 1990s higher-order post-
Newtonian calculations [11] preceded extensive analytical
studies of relativistic two-body dynamics [12,13]. These
advances, together with numerical relativity breakthroughs
in the past decade [14–16], have enabled modeling of
binary black hole mergers and accurate predictions of
their gravitational waveforms. While numerous black hole
candidates have now been identified through electromag-
netic observations [17–19], black hole mergers have not
previously been observed.

The discovery of the binary pulsar systemPSR B1913þ16
by Hulse and Taylor [20] and subsequent observations of
its energy loss by Taylor and Weisberg [21] demonstrated
the existence of gravitational waves. This discovery,
along with emerging astrophysical understanding [22],
led to the recognition that direct observations of the
amplitude and phase of gravitational waves would enable
studies of additional relativistic systems and provide new
tests of general relativity, especially in the dynamic
strong-field regime.
Experiments to detect gravitational waves began with

Weber and his resonant mass detectors in the 1960s [23],
followed by an international network of cryogenic reso-
nant detectors [24]. Interferometric detectors were first
suggested in the early 1960s [25] and the 1970s [26]. A
study of the noise and performance of such detectors [27],
and further concepts to improve them [28], led to
proposals for long-baseline broadband laser interferome-
ters with the potential for significantly increased sensi-
tivity [29–32]. By the early 2000s, a set of initial detectors
was completed, including TAMA 300 in Japan, GEO 600
in Germany, the Laser Interferometer Gravitational-Wave
Observatory (LIGO) in the United States, and Virgo in
Italy. Combinations of these detectors made joint obser-
vations from 2002 through 2011, setting upper limits on a
variety of gravitational-wave sources while evolving into
a global network. In 2015, Advanced LIGO became the
first of a significantly more sensitive network of advanced
detectors to begin observations [33–36].
A century after the fundamental predictions of Einstein

and Schwarzschild, we report the first direct detection of
gravitational waves and the first direct observation of a
binary black hole system merging to form a single black
hole. Our observations provide unique access to the

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.
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What will we learn from 
neutron-star mergers

Tidal polarizability scales as R5 !
observations and population synthesis studies suggest
these systems to be most abundant [40]. After energy and
angular momentum losses by GWs have driven the inspiral
of the NSs for several 100 Myrs, there are two different
outcomes of the coalescence. Either the two stars directly
form a black hole (BH) shortly after they fuse (‘‘prompt
collapse’’), or the merging leads to the formation of a
differentially rotating object (DRO) that is stabilized
against the gravitational collapse by rotation and thermal

pressure contributions. Continuous loss of angular momen-
tum by GWs and redistribution to the outer merger remnant
will finally lead to a ‘‘delayed collapse’’ on time scales of
typically several 10–100 ms depending on the mass and the
EoS. For EoSs with a sufficiently highMmax stable or very
long-lived rigidly rotating NSs are the final product.
A prompt collapse occurs for three EoSs of our sample

(marked by x in Table I and Fig. 1). One observes this
scenario only for EoSs with small Rmax. In the simulations
with the remaining EoSs DROs are formed. The evolution
of these mergers is qualitatively similar. The dynamics are
described in [21,22].
For all models that produce a DRO the GW signal is

analyzed by a post-Newtonian quadrupole formula [21].
The inset of Fig. 2 shows the GW amplitude of the plus
polarization at a polar distance of 20 Mpc for NSs de-
scribed by the Shen EoS. Clearly visible is the inspiral
phase with an increasing amplitude and frequency (until
5 ms), followed by the merging and the ringdown of the
postmerger remnant (from 6 ms). All DROs are stable
against collapse well beyond the complete damping of
the postmerger oscillations. In Fig. 2 we plot the spectra
of the angle-averaged effective amplitude, hav¼0:4f~hzðfÞ
(see, e.g., [16]), at a distance of 20 Mpc for the Shen
EoS (solid black) and the eosUU (dash-dotted) together
with the anticipated sensitivity for Advanced LIGO [17]
and the planned Einstein Telescope (ET) [41]. Here

~hzðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj~hþj2 þ j~h%j2Þ=2

q
is given by the Fourier trans-

forms, ~hþ=%, of the waveforms for both polarizations
observed along the pole. As a characteristic feature of the
spectra a pronounced peak at fpeak ¼ 2:19 kHz for the
Shen EoS and 3.50 kHz for eosUU is found, which is
known to be connected to the GW emission of the merger
remnant [7]. Recently, this peak has been identified as the
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FIG. 1 (color online). NS M-R relations for all considered
EoSs. Red curves (gray in print version) correspond to EoSs
that include thermal effects consistently, black lines indicate
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FIG. 2 (color online). Orientation-averaged spectra of the GW
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EoSs and the Advanced LIGO [red dashed (gray in print ver-
sion)] and ET (black dashed) unity SNR sensitivities. The inset
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of 20 Mpc for the Shen EoS.

TABLE I. Used EoSs. Mmax and Rmax are mass and radius of
the maximum-mass TOV configuration, fpeak is the peak fre-

quency of the postmerger GWemission with the FWHM (a cross
indicates prompt collapse of the remnant). f~hzðfpeakÞ is the

effective peak amplitude of the GW signal at a polar distance
of 20 Mpc. The tables of the first five and next seven EoSs are
taken from [25,26], respectively.

Mmax Rmax fpeak, FWHM f~hzðfpeakÞ
EoS with references [M&] [km] [kHz] [10'21]

Sly4 [27] þ!th 2.05 10.01 3.32, 0.20 2.33

APR [28] þ!th 2.19 9.90 3.46, 0.18 2.45

FPS [29] þ!th 1.80 9.30 x x
BBB2 [30] þ!th 1.92 9.55 3.73, 0.22 1.33

Glendnh3 [31]þ!th 1.96 11.48 2.33, 0.13 1.27

eosAU [32] þ!th 2.14 9.45 x x
eosC [33] þ!th 1.87 9.89 3.33, 0.22 1.27

eosL [34] þ!th 2.76 14.30 1.84, 0.10 1.38

eosO [35] þ!th 2.39 11.56 2.66, 0.11 2.30

eosUU [32] þ!th 2.21 9.84 3.50, 0.17 2.64

eosWS [32] þ!th 1.85 9.58 x x
SKA [36] þ!th 2.21 11.17 2.64, 0.13 1.96

Shen [37] 2.24 12.63 2.19, 0.15 1.43

LS180 [36] 1.83 10.04 3.26, 0.25 1.19

LS220 [36] 2.04 10.61 2.89, 0.21 1.63

LS375 [36] 2.71 12.34 2.40, 0.13 1.82

GS1 [38] 2.75 13.27 2.10, 0.12 1.46

GS2 [39] 2.09 11.78 2.53, 0.12 2.15
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pð~dij~θi; ~E;H; IÞ ¼ pð~dij~θi;H; IÞ. (The waveform signal
depends on ~E only through ~Λi which is already included as
a waveform parameter.)
The marginalized PDF [Eq. (20)] is now

pð~EjD;H;IÞ ¼ 1

pðDjH;IÞ

Z
d~θin;1…d~θin;n

× pð~EjH;IÞ
Yn

i¼1

½pðm1i;m2ij~E;H;IÞ

× pð ~Λijm1i;m2i; ~E;H;IÞLð~di; ~θin;i;H;IÞ%;
ð24Þ

where we have defined the quasilikelihood for the intrinsic
parameters as

Lð~di; ~θin;i;H;IÞ ¼
Z

d~θex;ipð~θex;ijH; IÞpð~dij~θi;H; IÞ:

ð25Þ

Because ~Λi is a deterministic function of m1i, m2i and the
EOS parameters,

pð ~Λijm1i; m2i; ~E;H; IÞ ¼ δð ~Λi − ~Λðm1i; m2i; ~EÞÞ: ð26Þ

The marginalized PDF finally becomes

pð~EjD;H; IÞ ¼ 1

pðDjH; IÞ

Z
dm11dm21…dm1ndm2n

× pð~EjH; IÞ
Yn

i¼1

½pðm1i; m2ij~E;H; IÞ

× Lð~di; ~θin;i;H; IÞj ~Λi¼ ~Λðm1i;m2i; ~EÞ
%: ð27Þ

The problem has now been reduced to computing the
quasilikelihood [Eq. (25)] for each BNS event and then
computing Eq. (27).

B. Likelihood and signal-to-noise ratio

The final ingredient we need to evaluate the marginalized
PDF is an expression for the likelihood pð~dij~θi;H; IÞ for
each GWevent.4 In this paper we assume that each detector
in the network has stationary, Gaussian noise and that the
noise between detectors is uncorrelated. This means that
the power spectral density (PSD) SnðfÞa of the noise naðtÞ
in detector a is

h ~naðfÞ ~na&ðf0Þi ¼ 1

2
δðf − f0ÞSnðfÞa; ð28Þ

where ~naðfÞ is the Fourier transform of the noise of
detector a and h·i represents an ensemble average. For a
GW event with true parameters θ̂, resulting in the GW
signal haðt; θ̂Þ, the data stream of detector a will be

daðtÞ ¼ naðtÞ þ haðt; θ̂Þ: ð29Þ

For stationary, Gaussian noise, it is well known that the
probability of obtaining the noise time series nðtÞ is

pn½nðtÞ% ∝ e−ðn;nÞ=2; ð30Þ

where ða; bÞ is the usual inner product between two time
series aðtÞ and bðtÞ weighted by the PSD

ða; bÞ ¼ 4Re
Z

∞

0

~aðfÞ ~b&ðfÞ
SnðfÞ

df: ð31Þ

FIG. 2 (color online). Radius and tidal deformability of
tabulated EOS models (solid line) and the least-squares piece-
wise-polytrope fits (dashed line) to those tabulated models given
in Table I. The 20 vertical lines represent the most likely NS
masses of the ten known BNS systems [38]. Some of these
masses, however, have significant uncertainties. The overlapping
vertical bands represent the 1σ uncertainty in the masses of the
pulsars J1614-2230 (1.97( 0.04M⊙) [1] and J0348þ 0432
(2.01( 0.04M⊙) [2], both in neutron-star–white-dwarf binaries.

4In the following subsections, when we discuss the likelihood
for individual GW events, we omit the event index i for brevity.
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characterize EoS by radius of 
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sun

Triangles: strange quark matter; red: temperature dependent EoS; others: ideal-gas for thermal effects

all 1.35-1.35 simulations
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1
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2
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Pure TOV property => Radius measurement via fpeak

Important: Simulations for the same binary mass, just with varied EoS

→ Empirical relation between GW frequency and radius of non-rotating NS
NS radius measured to better than 1km!



What else will we learn from  
neutron-star mergers
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Figure 3. Amount of unbound material for 1.35–1.35 M⊙ mergers (top left) and 1.2–1.5 M⊙ mergers (top right) for different EOSs characterized by the corresponding
radius R1.35 of a nonrotating NS. Red crosses denote EOSs which include thermal effects consistently, while black (blue) symbols indicate zero-temperature EOSs
that are supplemented by a thermal ideal-gas component with Γth = 2 (Γth = 1.5) (see main text). Small symbols represent EOSs which are incompatible with current
NS mass measurements (Demorest et al. 2010; Antoniadis et al. 2013). Circles display EOSs which lead to the prompt collapse to a black hole. The lower panels
display the sum of the maxima of the coordinate velocities of the mass centers of the two binary components as a function of R1.35 for symmetric (bottom left) and
asymmetric (bottom right) binaries.
(A color version of this figure is available in the online journal.)

2013; Rosswog 2013), whereas the relativistic calculations of
this study and in Oechslin et al. (2007) and Goriely et al.
(2011) yield only a few 10−3 M⊙ of unbound material for the
1.35–1.35 M⊙ binary with the same EOS. Comparing the re-
sults of our study with the likewise relativistic calculations in
Hotokezaka et al. (2013) shows very good agreement for all
four EOSs used in Hotokezaka et al. (2013). For example, for
the APR EOS with Γth = 2 both groups find about 5×10−3 M⊙
of unbound matter. This is remarkable because the implementa-
tions differ with respect to the hydrodynamics scheme, which is
an SPH algorithm here but a grid-based, high-resolution central
scheme in Hotokezaka et al. (2013). (Note that we employ the
conformal flatness approximation whereas the calculations in
Hotokezaka et al. 2013 are conducted within full general rela-
tivity.) These findings provide confidence in the results on the
quantitative level and point toward fundamental differences be-
tween Newtonian and relativistic treatments. Such differences
are not unexpected because NSs are more compact in general
relativity than in Newtonian gravity. The stronger gravitational
attraction prevents the formation of pronounced tidal tails at the
outer faces of the colliding stars and increases the strength of
the collision.

3.2. Equation of State Dependence

Several NS EOSs have been employed in merger simulations
by different groups, but a large, systematic investigation of the

EOS dependence of the ejecta production is still missing in
particular with a consistent description of thermal effects. For a
given EOS the radius R1.35 of a nonrotating NS with 1.35 M⊙
is a characteristic quantity specifying the compactness of NSs.
Therefore, we use R1.35 to describe the influence of the high-
density EOS on the amount of NS merger ejecta.

The upper left panel of Figure 3 displays the amount
of unbound material as a function of R1.35 for all 40 EOSs
used in our study (see also Table 1). Red crosses identify
EOSs which provide the full temperature dependence. The
black symbols correspond to barotropic zero-temperature EOSs,
which are supplemented by a thermal ideal-gas component
choosing Γth = 2 (see Section 2). Results based on the same
zero-temperature EOS but with Γth = 1.5 are given in blue
at the same radius R1.35. Small symbols indicate results for
EOSs which are excluded by the pulsar mass measurement of
Antoniadis et al. (2013). Circles mark cases which lead to the
prompt collapse to a black hole.

One can recognize a clear EOS dependence of the ejecta mass,
where EOSs with a high compactness of the NSs lead to an
enhanced production of unbound material. The ejecta mass can
be as big as about 0.01 M⊙ for symmetric mergers with a total
binary mass Mtot = M1 + M2 = 2.7 M⊙. EOSs with relatively
large NS radii lead to outflow masses of about 0.001–0.002 M⊙.
For EOSs with approximately the same R1.35 the ejecta masses
show a scatter of up to 0.003 M⊙. However, considering only
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R1.35 proxy for 
mass ejecta

Bauswein,Goriely,Janka; APJ (2013) 

LIGO will provide critical insights into  
the behavior of ultra dense matter
Merger rate and ejecta mass unknown  
Galactic merger rate depends on EOS:  
4x10-5  (soft)  4x10-4  (stiff) per year to  
account for observation

Soft: Rn-Rp is small           neutron star more compact 
merger is more violent           higher abundance  
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Figure 2. Merger and mass ejection dynamics of the 1.35–1.35 M⊙ binary with the DD2 EOS, visualized by the color-coded conserved rest-mass density (logarithmically
plotted in g cm−3) in the equatorial plane. The dots mark SPH particles which represent ultimately gravitationally unbound matter. Their positions are projections of
the three-dimensional locations anywhere in the merging stars onto the orbital plane. Black and white indicate the origin from the one or the other NS. For every tenth
particle the coordinate velocity is indicated by an arrow with a length proportional to the absolute value of the velocity (the speed of light corresponds to a line length
of 50 km). The time is indicated below the color bar of each panel. Note that the side length of the bottom panels is enlarged. The visualization tool SPLASH was
used to convert SPH data to grid data (Price 2007).
(A color version of this figure is available in the online journal.)

6

How were the heavy elements 
   from iron to uranium made?
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